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1 Introduction
Ionospheric transfer function (ITF) algorithms determine the effects of the ionosphere on an electro-
magnetic (EM) radio-frequency (RF) signal as it propagates through. In this report, the Bouger’s
law shell model is outlined. This ITF is very similar to the Snell’s Law Shell ITF [1]; however, in
this formulation, plasma parameters in the ionosphere are allowed to change radially.

This algorithm is expressed in the frequency domain. In this way, it is applied as linear time
invariant (LTI) filter function [2].

Signals in this report are assumed to have only a single component (i.e. x, y or z in a rectangular
coordinate system). Multi-component signals can be treated simply by applying the specific ITF
to each component separately.
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2 Review of Snell’s law

2.1 inhomogeneous media - stratified layers
2.1.1 rectilinear stratification

Figure 1: Geometry for Snell’s law in a rectilinear planar stratified medium.

Consider an EM wave propagating in a planar stratified medium, with each layer having a width
w, as shown in Fig. 1. Here, the properties of each layer are homogeneous, but from one to
the next they can change. Their respective refractive indices are n1, n2, and n3. The EM wave
propagates from medium 1 through 3 (and beyond). We assume it propagates under the constraints
of geometric optics [3, 4], and furthermore will neglect reflections at boundaries. Snell’s law relates
the incident to transmitted angles as

n1 sinψ1i = n2 sinψ2t = n3 sinψ3t = K (1)

or
nj sinψji = K (2)

Note that due to the geometry, incident and transmitted angles are equal inside each stratified
layer. Thus, we can calculate the angle of transmission into a fourth layer from, say, information
of the first layer alone

sinψT = K

n4
= n1

n4
sinψ1i (3)
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The path length of the ray through each layer is straightforward to calculate from geometry

Sj = w

cosψjt
(4)

and the total path length through the medium is simply the sum

Stotal = Σ
j
Sj (5)

2.1.2 polar stratification

Next, consider the same situation in a polar stratified medium, as shown in Fig. 2.

Figure 2: Geometry for Snell’s law in a polar stratified medium.

The boundaries of each layer are defined by their radii with respect to the point O. The EM
wave starts in layer 1, and refracts through layer 3 (again ignoring reflections at boundaries), where
each layer is defined by a thickness w. Here, the system geometry dictates that transmitted and
incident angles within each layer are no longer equal, that is

ψ2t 6= ψ2i ψ3t 6= ψ3i (6)

so we must take a different path to reach a relation like Eq. 2.
Consider the right triangle OBC in Fig. 2. The leg BC is coliniear with the ray path in the

second layer. Notice that this triangle shares leg d with right triangle OBA. From this construction,
we see that the angles ψ2t and ψ2i are related by

sinψ2t = d

r1
= sinψ2i = d

r2
=⇒ r1 sinψ2t = r2 sinψ2i (7)

4



Furthermore, from geometric optics, we can apply Snell’s law locally. At point A this gives

n1 sinψ1i = n2 sinψ2t (8)

or, using sinψ2t from Eq. 7
r2n2 sinψ2i = r1n1 sinψ1i (9)

which is generalized for all layers as in Eq. 2

rjnj sinψji = K (10)

Now we can relate incident angles in each layer through Eq. 10, and transmitted angles with Eq. 2
using parameters of the two layers encompassing the boundary of interest. Eqn. 10 is known as
Bouger’s law [3] for EM waves propagating in spherically stratified media.

Here, to find the transmitted angle ψT into medium 4, we get

sinψT = n3

n4
sinψ3i = n3

n4

K

r3n3
= r1

r3n4
sinψ1i (11)

The path length through each layer can again be calculated from geometry. Consider the ray’s
path S2 through layer 2 in Fig. 2 from points A to C. From triangles OAB, OCB, and the Law of
sines, we get

S2 = r2
sin(ψ2t − ψ2i)

sinψ2t
(12)

or, more generally
Sj = rj

sin(ψjt − ψji)
sinψjt

(13)

where
rj = jw (14)

and the total path length through the stratified medium is given in Eq. 5.
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2.2 inhomogeneous media - continuous variation
If each layer were made infinitesimally thin, we can think of the medium through which the EM
wave propagates (ionosphere) as a single shell with refractive parameters that vary continuously.
While the rectilinear and polar geometric form of Snell’s law, Eqns. 2 and 10, still hold, calculation
of the respective path lengths changes from discrete to differential. The path length is critical in
that it is used to determine the phase change imparted by the ionosphere on the propagating EM
wave.

2.2.1 rectilinear geometry

Figure 3: Geometry for Snell’s law in an inhomogeneous medium where the refractive index n is a
function of x only.

Consider the situation shown in Fig. 3. An EM wave is incident from a medium with refractive
index n0 to a medium in which it changes with respect to the x coordinate (n −→ n(x)). At point
P the ray will continue a distance dS at an angle ψ, which is the angle of transmission. Thus,
from Snell’s law,

n(x) sinψ = n0 sinψi = K (15)
or

sinψ = K

n(x) (16)

where K = n0 sinψi. Furthermore, from the differential triangle at point P we see that

cosψ = dx

dS
(17)

thus
dx2

dS2 + K2

n2(x) = 1 (18)
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The differential path length dS is then

dS = n(x)√
n2(x)−K2

dx (19)

and we can find the total path length through the medium by integration

S =

d∫
0

n(x)√
n2(x)− n2

0 sin2 ψi
dx (20)

2.2.2 polar geometry

In this situation, The EM wave (ray) is incident at point A and emerges at point B. The refrac-
tive index varies continuously in radius (n −→ n(r)), causing a continuous variation in the ray’s
direction as a function of radius.

Figure 4: Geometry for Snell’s law in an inhomogeneous medium in which n is a function of r only.

The path length S from A to B can be solved using analytic geometry. Consider the curve in
Fig. 5 of the form r = f(θ), where r is a differentiable function of θ, and let it represent the EM
ray’s path through an inhomogeneous medium.
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Figure 5: Angle ψ between the tangent and radius vector.

At any point P on that curve, the relationship between the polar angle θ, tangential angle φ [5],
and the angle ψ between the radius and tangent to that point is (Fig. 5a)

φ = θ + ψ (21)

Notice that the angle ψ is equivalent to the angle ψT in Fig. 4, or any transmission angle ψ interior
to the medium. We would like to solve for this along with the differential path length dS.

To find ψ, recall
x = r cos θ y = r sin θ (22)
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where

dx

dθ
= −r sin θ + cos θdr

dθ
(23)

dy

dθ
= r cos θ + sin θdr

dθ
(24)

From Eq. 21
tanψ = tan(φ− θ) = tanφ− tan θ

1 + tanφ tan θ (25)

The definitions of θ and φ are [5]

tan θ = y

x
tanφ = dy/dθ

dx/dθ
(26)

from which we can find a form of ψ more tractable for polar geometry

tanψ = r

dr/dθ
(27)

The differential element of path length is solved from Eqns. 23 and 24

dS =
[
dx2 + dy2]1/2 =

[
r2dθ2 + dr2]1/2 (28)

which can also be verified from the differential triangle in Fig. 5b.
We integrate Eqn. 28 to get the total path length

S =
∫
dS =

∫ [
r2
(
dθ

dr

)2

+ 1
]1/2

dr (29)

using the functional form of r = f(θ) in the integrand.
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3 Bouger’s law ITF

Figure 6: Geometry for the Snell and Bouger’s law ITF models. The configuration for a ray that hits
the satellite is shown. (a) Snell’s law shell; (b) Bouger’s law shell.

This ITF is quite similar to the Snell’s law ITF [1] except for one important difference. Here, the
EM wave ray that traverses the ionosphere will have a path that continually changes direction due
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to the continuous variation in the ionospheric refractive index n in the radial direction, as shown
in Fig. 6(b). We are restricting n to vary in the radial direction only.

Consider an EM signal originating at a point source and traversing the ionosphere to a detector,
as shown in figure 6. The ionosphere is represented by the blue region and is assumed to be an
inhomogeneous spherical shell of some arbitrary thickness d, starting at a radius h relative to the
earth’s surface at radius RE. The plasma electron density will have some radial profile. Electron
collisions and ion motions will be ignored in this treatment because ions are considered to be too
massive to contribute to phenomena on the time scale of the RF EM wave, and wave damping due
to electron collisions is assumed insignificant. In rectilinear coordinates, the signal path is

Pα(0, RE) −→ P0(x0, y0) −→ P1(x1, y1) −→ PS(xS, yS) (30)

or in cylindrical coordinates

Pα(RE, π/2) −→ P0(r0, θ0) −→ P1(r1, θ1) −→ PS(rS, θS) (31)

It travels a total distance S = S1 + S2 + S3. Thus, the signal amplitude is decreased by a
factor 1/S. This is not strictly correct, as it does not account for the increase in the flux tube
encompassed by the ray as it propagates outward in the r coordinate. However, for the purposes
of this report, this assumption is strong enough to be considered valid for the change in signal
amplitude.

Note also that, by definition, the ray will refract such that θ1 < θ0 always because the presence
of a plasma will cause it to bend clockwise away from the radial direction. This is also true if there
were no plasma present by geometry. Thus, referring to Fig. 6(b)

θ1 = θ0 −∆θ (32)

The Earth’s magnetic field magnitude B0 and angle relative to the ray direction β are constant.
β is set by the angle between the LOS of the incident ray at the ionospheric underside, and B0
can correspond to its maximum amplitude within the ionosphere. If these quantities were allowed
to change radially in addition to the plasma electron density, the ITF calculation would need
to be done using the ray tracing method due to the fact that the EM ray direction relative to
the magnetic field’s orientation would need to be known at each step through the ionosphere to
calculate β. Thus, knowledge of the ray’s path would be necessary before it was calculated.

To summarize, the assumptions used above are

• plasma The ionosphere is a shell of plasma with a radial density profile, containing massive
ions and collisionless electrons.

• magnetic field The Earth’s magnetic field is a constant.

• B0 orientation The angle between the Earth’s magnetic field and the line of sight does not
change.

The index of refraction np(r, ω) in the plasma for either fast (m = −1) or slow (m = +1) root is
given by the Appleton Hartree dispersion relation [3]

np(r, ω) =
√√√√√1− X(r, ω)

1− 1
2
Y 2(ω) sin2 β

1−X(r, ω) + m
[

1
4

Y 4 sin4 β

(1−X(r, ω))2 + Y 2(ω) cos2 β

]1/2 (33)
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where
X(r, ω) =

ω2
p(r, ω)
ω2 Y (ω) = ωc

ω
(34)

The plasma and cyclotron frequencies are

ω2
p(r) = n0(r)q2

ε0me

and ωc = qB0

me

(35)

where ε0,me, and q are the permittivity of free space, electron mass, and electron charge in MKS
units respectively. Note that parameters depending on plasma density n0 are functions of radius.

In addition, a two dimensional geometry is constructed so that the source is located at point P
at (r, θ) = (RE, π/2) where RE is the Earth’s radius. This configuration is easily realized with the
appropriate coordinate rotation. The ionosphere begins at an altitude h = r0 − RE with a width
d.

The signal path (Poynting vector) is refracted through the ionosphere with a direction of
propagation that can be treated like a ray path under the geometric optics assumption [4, 3],
which is valid for the frequency range of signals relevant to this report.

Consider an EM ray launched at an inclination angle of α at point (RE, π/2) as shown in
Fig. 6(b), which intersects the satellite detector. We want to calculate the ray’s total path S from
its origin to the satellite detector

To begin, S1 is calculated in terms of the underside pierce point P0 located at x0, y0

S1 = x0

sinα (36)

The radius from the origin to that point is given by the law of cosines

r2
0 = R2

E + S2
1 − 2RES1 cos (π − α) (37)

= R2
E + S2

1 + 2RES1 cos(α) (38)

Using equation 36, and r0 = RE + h, in equation 38 gives a quadratic equation for x0 in terms
of α

x0 = −RE

2 sin 2α± 1
2 sin 2α

[
R2
E + h2 + 2REh

cos2 α

]1/2

(39)

Discard the nonphysical (negative) root to get

x0 = −RE

2 sin 2α + 1
2 sin 2α

[
R2
E + h2 + 2REh

cos2 α

]1/2

(40)

and this is used in Eqn. 36 to find S1.
Next, we need to find the initial incidence angle ψi of the ray at the point P0. From the law of

sines we have
RE

sinψi
= r0

sin(π − α) (41)

such that the incident underside pierce point angle is

ψi = sin−1
(
RE

r0
sinα

)
(42)
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The initial transmission angle ψ2 of the ray can be found from a local application of Snell’s law
at the underside pierce point P0

n0 · sinψi = np(r0) sinψ2 (43)

where the frequency dependence of np is assumed, and n0 = 1. Thus

ψ2 = sin−1
(

1
np(r0) sinψi

)
= sin−1

(
Re

r0np(r0) sinα
)

(44)

Now that we have found the initial transmission angle ψ2, we will use the results of section 2.2.2
to calculate the ray’s final location angle θ1, Snell’s law to find the transmission angle ψ3 at the
ionosphere topside, and the path S2 through the ionosphere from points P0 (bottom) to P1 (top).

ψ is the angle between the ray’s tangent and radial vector at any point inside the ionosphere
shell, thus Bourger’s law dictates that the expression

rnp(r) sinψ(r) = r0n0 sinψ0 = K (45)

is a constant. Also, from the differential triangle in Fig. 5(b)

sinψ = r dθ

dS
= r dθ

dθ [r2 + (dr/dθ)2]1/2
(46)

or equivalently, using Eq. 45
K

rnp(r)
= r dθ

dθ [r2 + (dr/dθ)2]1/2
(47)

Solve Eq. 47 for dθ/dr
dθ

dr
= K

r
[
r2n2

p(r)−K2
]1/2 (48)

and integrate to get the location angle at the topside

θ1 = θ0 −

r1=r0+d∫
r0

K

r
[
r2n2

p(r)−K2
]1/2dr (49)

where n0 = 1 for vacuum on the bottom side, K = r0 sinψi, and the integral represents the
parameter ∆θ from Eqn. 32.

The incidence angle ψ′2 of the ray at the ionosphere topside at P1 = (r1, θ1) is found from
Eqn. 45 with r = r1 and n0 = 1

sinψ′2 = r0 sinψi
r1n(r1) (50)

Application of Snell’s law at that point gives

1 · sinψ3 = n(r1) sinψ′2 (51)

Rearrange using Eqn. 50 to get the expression for the transmitted angle at P1

sinψ3 = r0

r1
sinψi (52)

13



The path length S2 is found by integrating dS from r0 to r1 = r0 + d. the differential path
length dS is given by Eqn. 28

dS =
[
r2dθ2 + dr2]1/2 = dr

[
1 + r2 (dθ/dr)2]1/2 (53)

Using the expression for dθ/dr from Eqn. 48, we get

dS =
[

r2n2
p(r)

r2n2
p(r)−K2

]1/2

dr (54)

Integrating this expression in r gives the path length S2 through the ionosphere

S2 =

r0+d∫
r0

rnp(r)[
r2n2

p(r)−K2
]1/2dr (55)

Finally, we need to calculate the path length S3 from the ionospheric pierce point P1 = (r1, θ1)
to the satellite detector at Ps = (rs, θs) in Fig. 6. Reference to Fig. 7 shows that

S3 = ∆x
cos γ (56)

Note that θ1 = ψ3 + γ. Thus, the expression for S3 is

S3 = xsat − x1

cos(θ1 − ψ3) = xsat − r1 cos θ1

cos(θ1 − ψ3) (57)

Figure 7: Showing the configuration for calculating the criterion.
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Thus, given the satellite detector coordinates (rS, θS), the ray that intersects the detector
follows segments S1, S2, and S3. These segment lengths are given in equations 36, 55, and 57.
Note that first: all the parameters in those equations are functions of the launch angle α, and
second: the detector location can be found in two ways. Consider the x coordinate. It is found
from the detector coordinates

xS = rs cos θS (58)

but can also be found using the derived expressions for the ray path

xS = x1 + ∆x
= r1 cos θ1 + S3 cos γ

= r1 cos θ1 + yS − r1 sin θ1

tan (θ1 − ψ3) (59)

Equating the right hand side expressions in equations 58 and 59 results in a conditional equation
that depends on α

rs cos θS
?= r1 cos θ1(α) + yS − r1(α) sin θ1(α)

tan (θ1(α)− ψ3(α)) (60)

and will be called the constraint equation from here on. It is solved iteratively, at every frequency
in the signal bandwidth, to find the launch angle α for the ray to intersect the satellite. Note that
this angle may not exist depending on the detector position and parameters of the ionospere shell.

Each frequency component of the signal that intersects the detector will then have its amplitude
decreased by a factor

1
S1 + S2 + S3

The phase of those components is calculated using the phase delay time of the signal on each
segment of the ray. The ray’s phase velocity is the speed of light for segments S1 and S3 such that

∆t1,3 = S1,3

c
(61)

The ray’s phase delay in the ionosphere is given by the velocity of an EM wave in a magnetized
plasma with the parameters specified by the ionosphere shell for segment S2, that is

∆tiono = S2

vφ
= S2np

c
= 1
c

r1∫
r0

rn2
p(r)[

r2n2
p(r)−K2

]1/2dr (62)

4 solving the constraint equation
There are many methods for iteratively solving the constraint equation, 60. There are some
important points to consider as well. From Fig. 7 and Snell’s law at a vacuum/plasma interface, it
is clear that any ray path originating from the point (x, y) = (0, RE) will refract in the clockwise
direction at the underside of the ionosphere shell. This means that for the ray to intersect the
detector, the maximum in α is defined as the angle between the y axis and the line of sight to the
detector αSAT , and this would be for no refraction in the ionosphere, so it is an absolute upper
limit (see figure 8).
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Figure 8: Geometry for the Snell’s law shell model. Showing the relation between α and αSAT .

The next item to consider is that once ψ2 in figure 6(b) becomes equal to or greater than
π/2, the ray has suffered complete reflection at the vacuum/plasma interface at the underside of
the ionosphere shell. Thus ψ2(α) < π/2 for a ray to have a nonzero probability of reaching the
detector. Equation 44 can be used in equation 42 to get

ψ2(α) = sin−1
(

Re

r0np(r0) sinα
)
≤ π

2 (63)

or, in terms of the angle α
α ≤ sin−1

(
r0np(r0)
Re

)
(64)

Equations 63 and 64 define the upper limit on the angle α, whichever is smaller. The α root
that solves the constraint equation can be bracketed in the interval

[0, αSAT ] , αSAT < sin−1
(
r0np(r0)
Re

)
[
0, sin−1

(
npR0

RE

)]
, αSAT ≥ sin−1

(
r0np(r0)
Re

)
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